We present measurements of the branching fractions for the decays B -> K mu(+)mu(-) and B -> Ke(+)e(-), and their ratio (R-K), using a data sample of 711 fb(-1) that contains 772 x 10(6) B (B) over bar events. The data were collected at the Gamma(4S) resonance with the Belle detector at the KEKB asymmetric-energy e(+)e(-) collider. The ratio RK is measured in five bins of dilepton invariant-mass-squared (q(2)): q(2) is an element of (0.1, 4.0), (4.00, 8.12), (1.0, 6.0), (10.2, 12.8) and (> 14.18) GeV2/c(4), along with the whole q(2) region. The R-K value for q(2) is an element of (1.0, 6.0) GeV2/c(4) is 1.03(-0.24)(+0.28) +/- 0.01. The first and second uncertainties listed are statistical and systematic, respectively. All results for R-K are consistent with Standard Model predictions. We also measure CP-averaged isospin asymmetries in the same q(2) bins. The results are consistent with a null asymmetry, with the largest difference of 2.6 standard deviations occurring for the q(2) is an element of (1.0, 6.0) GeV2/c(4) bin in the mode with muon final states. The measured differential branching fractions, dB/dq(2), are consistent with theoretical predictions for charged B decays, while the corresponding values are below the expectations for neutral B decays. We have also searched for lepton-flavor-violating B -> K mu(+/-)e(-/+) decays and set 90% confidence-level upper limits on the branching fraction in the range of 10(-8) for B+ -> K+ mu(+/-)e(-/+), and B-0 -> K-0 mu(+/-) e(-/+) modes.
Matthias Finger, Konstantin Androsov, Jan Steggemann, Qian Wang, Anna Mascellani, Yiming Li, Varun Sharma, Xin Chen, Rakesh Chawla, Matteo Galli
Matthias Finger, Konstantin Androsov, Jan Steggemann, Qian Wang, Anna Mascellani, Yiming Li, Varun Sharma, Xin Chen, Rakesh Chawla, Matteo Galli