Bruit numériqueDans une , on appelle bruit numérique toute fluctuation parasite ou dégradation que subit l'image de l'instant de son acquisition jusqu'à son enregistrement. Le bruit numérique est une notion générale à tout type d'image numérique, et ce quel que soit le type du capteur à l'origine de son acquisition (appareil photo numérique, scanner, caméra thermique...etc). Les sources de bruit numérique sont multiples, certaines sont physiques liées à la qualité de l’éclairage, de la scène, la température du capteur, la stabilité du capteur de l'image durant l'acquisition, d'autres apparaissent durant la numérisation de l'information.
Symétrie (physique)En physique la notion de symétrie, qui est intimement associée à la notion d'invariance, renvoie à la possibilité de considérer un même système physique selon plusieurs points de vue distincts en termes de description mais équivalents quant aux prédictions effectuées sur son évolution. Une théorie physique possède alors une symétrie S, si toute équation dans cette théorie décrit tout aussi correctement une particule ρ qu'une particule -ρ 'symétrique' de ρ.
Matrice jacobienneEn analyse vectorielle, la matrice jacobienne est la matrice des dérivées partielles du premier ordre d'une fonction vectorielle en un point donné. Son nom vient du mathématicien Charles Jacobi. Le déterminant de cette matrice, appelé jacobien, joue un rôle important pour l'intégration par changement de variable et dans la résolution de problèmes non linéaires. Soit F une fonction d'un ouvert de R à valeurs dans R. Une telle fonction est définie par ses m fonctions composantes à valeurs réelles : .
Symétrie Cvignette|upright=1.3|Illusion de symétrie : le reflet de l'ombre de la lampe (sous l'effet du flash de l'appareil photo) semble être le reflet de celle-ci ! En physique des particules, la conjugaison de charge, ou transformation de charge, ou inversion de charge est possiblement observable en ce qui concerne l'électromagnétisme, la gravité, et l'interaction forte. En revanche, la « Symétrie C » (symétrie de charge) n'est pas observée « dans le tableau » de l'interaction faible. C(x)= -x. C(e+)= e-. C(e-)= e+.
Time translation symmetryTime translation symmetry or temporal translation symmetry (TTS) is a mathematical transformation in physics that moves the times of events through a common interval. Time translation symmetry is the law that the laws of physics are unchanged (i.e. invariant) under such a transformation. Time translation symmetry is a rigorous way to formulate the idea that the laws of physics are the same throughout history. Time translation symmetry is closely connected, via the Noether theorem, to conservation of energy.
StochastiqueLe mot stochastique est synonyme d', en référence au hasard et s’oppose par définition au déterminisme. Stochastique est un terme d'origine grecque qui signifie « basé sur la conjecture ». En français, il est couramment utilisé pour décrire des phénomènes aléatoires ou imprévisibles. Dans les mathématiques et la statistique, « stochastique » fait référence à des processus qui sont déterminés par des séquences de mouvements aléatoires. Cela inclut tout ce qui est aléatoire ou imprévisible en fonction des informations actuellement disponibles.
Théorie de la fonctionnelle de la densitéLa théorie de la fonctionnelle de la densité (DFT, sigle pour Density Functional Theory) est une méthode de calcul quantique permettant l'étude de la structure électronique, en principe de manière exacte. Au début du , il s'agit de l'une des méthodes les plus utilisées dans les calculs quantiques aussi bien en physique de la matière condensée qu'en chimie quantique en raison de son application possible à des systèmes de tailles très variées, allant de quelques atomes à plusieurs centaines.
Déterminant (mathématiques)vignette|L'aire du parallélogramme est la valeur absolue du déterminant de la matrice formée par les vecteurs correspondants aux côtés du parallélogramme. En mathématiques, le déterminant est une valeur qu'on peut associer aux matrices ou aux applications linéaires en dimension finie. Sur les exemples les plus simples, ceux de la géométrie euclidienne en dimension 2 ou 3, il s'interprète en termes d'aires ou de volumes, et son signe est relié à la notion d'orientation.
Time reversibilityA mathematical or physical process is time-reversible if the dynamics of the process remain well-defined when the sequence of time-states is reversed. A deterministic process is time-reversible if the time-reversed process satisfies the same dynamic equations as the original process; in other words, the equations are invariant or symmetrical under a change in the sign of time. A stochastic process is reversible if the statistical properties of the process are the same as the statistical properties for time-reversed data from the same process.
MultivecteurUn multivecteur est le résultat d'un produit défini pour les éléments d'un espace vectoriel V. Un espace vectoriel muni d'une opération linéaire de produit entre ses éléments est une algèbre; on peut compter parmi les exemples d'algèbres sur un corps celles des matrices et des vecteurs.. L'algèbre des multivecteurs est construite grâce au produit extérieur ∧ et est liée à l’algèbre extérieure des formes différentiellesH. Flanders, Differential Forms with Applications to the Physical Sciences, Academic Press, New York, NY, 1963.