Non-invasive and invasive electrical neurostimulation are promising tools to better understand brain function and ultimately treat its malfunction. In current open-loop approaches, a clinician chooses a fixed set of stimulation parameters, informed by observed therapeutic benefits and previous empirical evidence. However, this procedure leads to a large intra- and inter-subject variability often introducing side-effects and low effect sizes. Closed-loop electrical neurostimulation (CLENS) approaches strive to alleviate these limitations by tailoring the stimulation parameters to an ongoing electrophysiological biomarker. Here, we review the current status of closed-loop, supraspinal electrical stimulation in humans, presenting our vision of potential control frameworks, and support the idea of creating synergies with the field of brain-machine interfacing. Finally, we pinpoint two pivotal challenges that, in our view, need to be overcome for this technology to become a reality: dealing with the electrical stimulation artifacts, and dissociating the pathological from physiological information within the targeted biomarker.
Friedhelm Christoph Hummel, Takuya Morishita, Pierre Theopistos Vassiliadis, Elena Beanato, Esra Neufeld, Fabienne Windel, Maximilian Jonas Wessel, Traian Popa, Julie Duqué