In UV-curable printing technology, an ink or a varnish is exposed to the UV-light source within a fraction of a second. Subsequent polymerization therefore proceeds in the dark, referred to as dark curing. Because dark curing can be critical and contributes to a large part of the overall conversion and to the final properties of the printed ink, the aim of this work was to get a better understanding of the dark curing process. Because an ink is a complex mixture of components, simpler systems representative of free radical and cationic chemistry were studied. Special attention was given to free radical polymerization with a detailed kinetic modeling. For cationic systems, the study was more application oriented. Attenuated-Total-Reflection Fourier-Transform Infrared (ATR-FTIR) spectroscopy was found to be the method of choice to follow in real-time the progress of the reaction under UV irradiation and in the dark. This technique allowed the study of curing conditions close to those encountered in industry. Dark curing of free radical was examined in systems consisting of a monomer (multifunctional acrylate) and a photoinitiator. The reactivities of different monomers were investigated and it was found that the chemistry of the spacer between the acrylate functional groups had an influence on the extent of dark curing. For example, TPGDA (tripropylene glycol diacrylate) led to higher overall conversion than HDDA (hexanediol diacrylate) although both are diacrylate monomers. Several explanations were put forward, such as the effect of dissolved oxygen, primary cyclization and initiation efficiency. The efficiency of photoinitiators (PIs) was examined and different behaviours were highlighted. For example, it was observed that DMPA (dimethoxyphenyl acetophenone) has a better quantum yield for α-cleavage compared to HCPK (1-hydroxycyclohexylphenyl ketone), whereas HCPK is more efficient in initiating the reaction, resulting in a better overall conversion in the dark. It is suggested that the two primary radicals resulting from the cleavage of the PI behave differently for DMPA and HCPK. One radical effectively initiates the reaction and the second is mainly involved in the termination process. These two different behaviours were observed under specific experimental conditions: (i) by covering the sample with a quartz plate and taking into account dissolved molecular oxygen and (ii) by curing under inert conditions with nitrogen. Photo-crosslinking polymerization reactions are strongly influenced by diffusion effects due to the formation of an infinite network. Therefore, it was proposed that a redistribution of reactivity within the system occurs, such as the diffusion of unreacted photoinitiators towards concentrations of unreacted monomers. This diffusion process has two positive effects: (i) for the same UV dose, but different intensities, a higher extent of conversion was reached with longer irradiation times under the condition investigated; (ii
Yves Leterrier, Sara Dalle Vacche