Espace localement connexeEn mathématiques, plus précisément en topologie, un espace localement connexe est un espace topologique pouvant être décrit à l’aide de ses ouverts connexes. En topologie, on dit qu’un espace est connexe lorsqu’il est fait « d’une seule pièce ». La question naturelle qui suit est de savoir si tout espace topologique peut être décrit comme la réunion disjointe (dans la catégorie des espaces topologiques) de ses composantes connexes ; en d’autres termes, peut-on considérer que lorsqu’on connait toutes les « pièces » d’un espace topologique, on sait tout de cet espace ? Une condition nécessaire et suffisante pour cela est que toutes les composantes connexes soient ouvertes.
Densité surfacique d'énergieLa densité surfacique d'énergie ou énergie surfacique, voire densité énergétique (quand le contexte surfacique est clair), est la quantité d’énergie par une unité de surface. Dans le Système international elle se mesure en J/m (joules par mètre carré). Dans un contexte industriel on l'exprime souvent en kWh/m (kilowatts-heures par mètre carré). Cette grandeur physique est principalement utilisée dans l'étude physique des interfaces entre liquides non miscibles, ou entre liquide et gaz, où elle caractérise l'énergie nécessaire à former une interface d'une certaine surface.