Densité d'un grapheEn mathématiques, et plus particulièrement en théorie des graphes, on peut associer à tout graphe un entier appelé densité du graphe. Ce paramètre mesure si le graphe a beaucoup d'arêtes ou peu. Un graphe dense (dense graph) est un graphe dans lequel le nombre d'arêtes (ou d'arcs) est proche du nombre maximal, par exemple un nombre quadratique par rapport au nombre de sommets. Un graphe creux (sparse graph) a au contraire peu d'arêtes, par exemple un nombre linéaire. La distinction entre graphe creux et dense est plutôt vague et dépend du contexte.
Arithmétique modulaireEn mathématiques et plus précisément en théorie algébrique des nombres, l’arithmétique modulaire est un ensemble de méthodes permettant la résolution de problèmes sur les nombres entiers. Ces méthodes dérivent de l’étude du reste obtenu par une division euclidienne. L'idée de base de l'arithmétique modulaire est de travailler non sur les nombres eux-mêmes, mais sur les restes de leur division par quelque chose. Quand on fait par exemple une preuve par neuf à l'école primaire, on effectue un peu d'arithmétique modulaire sans le savoir : le diviseur est alors le nombre 9.
Graphe de Ramanujanvignette|Le graphe de Pappus, qui selon les valeurs propres de sa matrice de connexion, est aussi un graphe de Ramanujan. Un graphe de Ramanujan, nommé d'après Srinivasa Ramanujan, est un graphe régulier dont le trou spectral (spectral gap) est presque aussi grand que possible. De tels graphes sont d'excellents graphes expanseurs. Autrement dit, il s'agit d'une famille de graphes où chaque sommet a un même degré (régulier) et où les deux valeurs propres les plus élevées ont une différence presque aussi grande que possible.
Théorie de la démonstrationLa théorie de la démonstration, aussi connue sous le nom de théorie de la preuve (de l'anglais proof theory), est une branche de la logique mathématique. Elle a été fondée par David Hilbert au début du . Hilbert a proposé cette nouvelle discipline mathématique lors de son célèbre exposé au congrès international des mathématiciens en 1900 avec pour objectif de démontrer la cohérence des mathématiques.
Multiplicative group of integers modulo nIn modular arithmetic, the integers coprime (relatively prime) to n from the set of n non-negative integers form a group under multiplication modulo n, called the multiplicative group of integers modulo n. Equivalently, the elements of this group can be thought of as the congruence classes, also known as residues modulo n, that are coprime to n. Hence another name is the group of primitive residue classes modulo n. In the theory of rings, a branch of abstract algebra, it is described as the group of units of the ring of integers modulo n.
Théorème du séparateur planaireEn théorie des graphes, le théorème du séparateur planaire, stipule que tout graphe planaire peut être divisé en parties plus petites en supprimant un petit nombre de sommets. Plus précisément, le théorème affirme qu'il existe un ensemble de sommets d'un graphe à sommets dont la suppression partitionne le graphe en sous-graphes disjoints dont chacun a au plus sommets. Une forme plus faible du théorème séparateur avec un séparateur de taille au lieu de a été prouvée à l'origine par Ungar (1951), et la forme avec la borne asymptotique plus fine sur la taille du séparateur a été prouvée pour la première fois par Lipton & Tarjan (1979).
Proof (truth)A proof is sufficient evidence or a sufficient argument for the truth of a proposition. The concept applies in a variety of disciplines, with both the nature of the evidence or justification and the criteria for sufficiency being area-dependent. In the area of oral and written communication such as conversation, dialog, rhetoric, etc., a proof is a persuasive perlocutionary speech act, which demonstrates the truth of a proposition.
Nombres premiers cousinsEn mathématiques, les nombres premiers cousins sont les paires de nombres premiers qui diffèrent de 4. Ils se rapprochent ainsi des nombres premiers jumeaux, les paires de nombres premiers qui diffèrent de 2, et des nombres premiers sexy, les paires de nombres premiers qui diffèrent de 6.
Caractéristique d'EulerEn mathématiques, et plus précisément en géométrie et en topologie algébrique, la caractéristique d'Euler — ou d'Euler-Poincaré — est un invariant numérique, un nombre qui décrit un aspect d'une forme d'un espace topologique ou de la structure de cet espace. Elle est communément notée χ. La caractéristique d'Euler fut définie à l'origine pour les polyèdres et fut utilisée pour démontrer divers théorèmes les concernant, incluant la classification des solides de Platon.
Famillevignette|Le repas familial (gravure sur bois, ). vignette|La famille de Philippe V d'Espagne (en 1723). vignette|Le portrait de famille est une des formes picturales répandues d'abord dans les familles nobles puis chez les familles bourgeoises (ici la famille Souchay vers 1805). vignette|Un peu de conversation, huile sur toile de Lilly Martin Spencer, vers 1851-1852 vignette|Peinture à l'huile de Jean de Francqueville intitulée . thumb|Portrait d'un chef camerounais et de sa famille (entre 1910 et 1930).