En mathématiques et plus précisément en théorie algébrique des nombres, l’arithmétique modulaire est un ensemble de méthodes permettant la résolution de problèmes sur les nombres entiers. Ces méthodes dérivent de l’étude du reste obtenu par une division euclidienne.
L'idée de base de l'arithmétique modulaire est de travailler non sur les nombres eux-mêmes, mais sur les restes de leur division par quelque chose. Quand on fait par exemple une preuve par neuf à l'école primaire, on effectue un peu d'arithmétique modulaire sans le savoir : le diviseur est alors le nombre 9.
Si ses origines remontent à l’Antiquité, les historiens associent généralement sa naissance à l’année 1801, date de la publication du livre Disquisitiones arithmeticae de Carl Friedrich Gauss. Sa nouvelle approche permet d’élucider de célèbres conjectures et simplifie les démonstrations d’importants résultats par une plus grande abstraction. Si le domaine naturel de ces méthodes est la théorie des nombres, les conséquences des idées de Gauss se retrouvent dans d’autres champs des mathématiques, comme l’algèbre ou la géométrie.
Le modifie le statut de l’arithmétique modulaire. L'arithmétique de base des ordinateurs, celle qui travaille sur des mots mémoire de taille fixe, est nécessairement une arithmétique modulaire. Le développement de nombreuses applications industrielles impose la mise au point d’algorithmes pour l'arithmétique modulaire. Ils résolvent essentiellement des questions soulevées par le développement de l'informatique.
L’article « Congruence sur les entiers » propose une introduction plus mathématique ; « Anneau Z/nZ » traite le même sujet de manière moins didactique et plus exhaustive.
En mathématiques pures, ce terme est très peu utilisé. La théorie algébrique des nombres désignant un domaine beaucoup plus large contenant par exemple les notions d'entiers algébriques et de théorie de Galois.
En mathématiques appliquées, cette expression est d'un usage fréquent pour décrire les bases mathématiques de différents domaines de la théorie de l'information : cryptologie, théorie des codes et informatique.
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Discrete mathematics is a discipline with applications to almost all areas of study. It provides a set of indispensable tools to computer science in particular. This course reviews (familiar) topics a
Text, sound, and images are examples of information sources stored in our computers and/or communicated over the Internet. How do we measure, compress, and protect the informatin they contain?
This course introduces the basics of cryptography. We review several types of cryptographic primitives, when it is safe to use them and how to select the appropriate security parameters. We detail how
En informatique, l'exponentiation rapide est un algorithme utilisé pour calculer rapidement de grandes puissances entières. En anglais, cette méthode est aussi appelée square-and-multiply (« mettre au carré et multiplier »). La première façon de calculer une puissance x est de multiplier x par lui-même n fois. Cependant, il existe des méthodes bien plus efficaces, où le nombre d'opérations nécessaires n'est plus de l'ordre de n mais de l'ordre de .
vignette|Nombres naturels de zéro à cent. Les nombres premiers sont marqués en rouge. vignette|Le nombre 7 est premier car il admet exactement deux diviseurs positifs distincts. Un nombre premier est un entier naturel qui admet exactement deux diviseurs distincts entiers et positifs. Ces deux diviseurs sont 1 et le nombre considéré, puisque tout nombre a pour diviseurs 1 et lui-même (comme le montre l’égalité n = 1 × n), les nombres premiers étant ceux qui ne possèdent pas d'autre diviseur.
En mathématiques, et plus précisément en arithmétique élémentaire, le théorème de Bachet-Bézout ou identité de Bézout est un résultat d'arithmétique élémentaire, qui prouve l'existence de solutions à l'équation diophantienne linéaire : ax + by = pgcd(a, b) d'inconnues x et y entiers relatifs, où a et b sont des coefficients entiers relatifs et où pgcd(a, b) est le plus grand commun diviseur de a et b. Le théorème de Bézout affirme que les entiers a et b sont premiers entre eux si et seulement si l'équation ax + by = 1 admet des solutions.
Explore le groupe Monster, un groupe simple sporadique avec une théorie de représentation unique.
Explore les techniques de linéarisation exactes pour transformer les systèmes non linéaires en systèmes linéaires, en mettant l'accent sur la stabilité du système.
Couvre les propriétés de base des cartes holomorphes et des extensions de la série Taylor en analyse complexe.
We show that mixed-characteristic and equicharacteristic small deformations of 3-dimensional canonical (resp., terminal) singularities with perfect residue field of characteristic p>5 are canonical (resp., terminal). We discuss applications to arithmetic a ...
We prove the non-planarity of a family of 3-regular graphs constructed from the solutions to the Markoff equation x2 + y2 + z2 = xyz modulo prime numbers greater than 7. The proof uses Euler characteristic and an enumeration of the short cycles in these gr ...
We give a construction of an efficient one-out-of-many proof system, in which a prover shows that he knows the pre-image for one element in a set, based on the hardness of lattice problems. The construction employs the recent zero-knowledge framework of Ly ...