Unité

Chaire de théorie analytique des nombres

Chaire
Résumé

Analytic Number Theory is the branch of number theory that studies properties of integers (and especially prime number) using principally methods from analysis. Its origins go back at least to Euler’s proof of the infiniteness of the set of prime numbers using the zeta function — to be called Riemann’s zeta function in the 19th. century — and was pursued notably by, Dirichlet (through his work on primes in arithmetic progression in which he introduced systematically L-functions) and, in a different direction, by Gauss when he counted the number of integral points within a circle of large radius. Another milestone is Riemann’s memoir in which Riemann considered the Zeta function as a function of the complex variable: he established the basic analytic properties of Zeta, related its zeros to the distribution of prime numbers and finally formulated his Riemann hypothesis. Eventually, Riemann’s work led to the proof by Hadamard/de la Vallée-Poussin of the Prime Number Theorem. Nowadays, Analytic Number Theory builds on a variety of very different techniques (L-functions, the Hardy-Littelwood circle method, Sieve methods…) and also make heavy use of deep methods from outside fields: arithmetic algebraic geometry, the theory of automorphic forms or ergodic theory. The purpose of the TAN project is to bring these very different methods together so as to foster further advances in number theory.

Source officielle
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.