Lecture

Evaluation Protocols

In course
DEMO: officia cillum sunt
Culpa aute sit labore velit qui veniam proident reprehenderit velit labore. Aliquip dolore commodo voluptate elit sit culpa sint tempor et reprehenderit eu exercitation sunt deserunt. Reprehenderit esse do dolor occaecat adipisicing laboris fugiat culpa irure. Ipsum sit quis fugiat nulla.
Login to see this section
Description

This lecture covers the evaluation protocols in machine learning, focusing on recall, precision, accuracy, F-measure, and specificity. It discusses the trade-offs between recall and precision, the importance of specificity in testing, and real-world examples like COVID-19 testing methods and cancer screening. The instructor explains the concepts using examples such as perfect recall and precision scenarios, strategies to improve precision, and the F1-score as a harmonic mean of recall and precision. Additionally, it explores the Receiver-Operator Curve (ROC) and decision thresholds in binary classification.

This video is available exclusively on Mediaspace for a restricted audience. Please log in to MediaSpace to access it if you have the necessary permissions.

Watch on Mediaspace
Instructor
id veniam minim ad
Anim dolore officia ut nisi Lorem irure occaecat quis veniam duis laborum in. Id qui magna excepteur officia officia consectetur sunt nisi velit irure sit laborum. Dolor minim proident irure duis Lorem do tempor dolore do. Nostrud magna mollit qui aute ea duis excepteur fugiat. Officia id Lorem id nulla ut velit mollit non ut nisi. Tempor aliqua magna minim velit sit cupidatat ad.
Login to see this section
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.