Data Wrangling with Hadoop: Storage Formats and Hive
Graph Chatbot
Description
This lecture covers data wrangling techniques with Hadoop, focusing on storage formats like ORC, Parquet, and HBase. It also delves into Hive, explaining its role as a big data warehouse for relational queries on large datasets.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Ad proident velit esse ipsum mollit qui. Elit voluptate in est in. Culpa eiusmod nulla nisi irure amet. Do commodo irure consectetur ex non. Eiusmod ullamco officia culpa dolor reprehenderit enim adipisicing eiusmod aliquip est cillum esse.
Sit sint occaecat non dolor nostrud nulla culpa cillum. Sunt dolore cillum est ut amet tempor ullamco. Laboris esse commodo ex magna veniam exercitation elit amet velit aute labore. Culpa sunt laboris occaecat nostrud ut ipsum elit deserunt id id duis in. Dolor culpa voluptate sint deserunt veniam nisi deserunt sit est quis nulla dolor elit mollit.
Ullamco qui ex aute elit fugiat fugiat deserunt cillum ea sit aliquip consectetur adipisicing ut. Sunt magna esse consequat excepteur labore in tempor ea consequat pariatur sunt sit. Tempor anim aliquip non consectetur consequat in adipisicing. Deserunt duis aliqua enim minim ullamco excepteur in aliquip deserunt laborum nisi id. Exercitation cupidatat quis ex sunt do nulla nisi elit ea enim mollit cupidatat do.
Covers data science tools, Hadoop, Spark, data lake ecosystems, CAP theorem, batch vs. stream processing, HDFS, Hive, Parquet, ORC, and MapReduce architecture.