Are you an EPFL student looking for a semester project?
Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.
This lecture covers the Cayley-Hamilton Theorem, stating that for a linear operator on a vector space, its characteristic polynomial satisfies its own equation. The proof involves showing that the operator raised to its dimension equals zero. The lecture also explores the implications of the theorem in terms of matrix polynomials and invertibility criteria.