Lecture

Computational Aspects of Optimization

Description

This lecture covers the computational aspects of optimization in neuron modeling, focusing on dealing with underconstrained parameters, parameter optimization, and metaheuristics. It discusses the use of fitness functions, multiobjective optimization, and successful fitting of neuron firing patterns. The instructor presents the challenges of recreating experimental firing types, overfitting, and generalization in neuron models, emphasizing the importance of deriving parameters from experimental data and using metaheuristics like evolutionary algorithms for parameter optimization.

Instructor
id eiusmod
In et amet qui anim. Nostrud irure consectetur incididunt proident veniam. Quis reprehenderit ea in nisi officia nostrud minim non nostrud sunt amet sint. Proident aliquip amet qui ipsum est amet consequat deserunt anim sint laborum ea. Eiusmod esse consectetur amet laborum aliquip enim. Ad deserunt magna proident Lorem ex elit id reprehenderit aliqua occaecat non id nisi reprehenderit. Nisi ipsum esse occaecat cupidatat nulla aute veniam cupidatat labore fugiat esse deserunt.
Login to see this section
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.