Lecture

Statistical Learning Models: Risk and Empirical Risk Minimization

In course
DEMO: magna ipsum
Nisi velit esse deserunt adipisicing elit ex ut ad cillum. Eiusmod dolor aliqua qui enim reprehenderit et et ea enim consectetur consequat minim. In elit commodo sint et laborum ut. Commodo eu labore in esse laboris sunt proident ut dolore magna cupidatat ipsum ea anim. Aliqua irure culpa dolore occaecat occaecat reprehenderit qui eiusmod. Amet consequat adipisicing esse nisi officia labore non consectetur veniam sit quis proident.
Login to see this section
Description

This lecture introduces the concept of statistical learning models, which consist of observations, a class of functions, and a loss function. It explains the population risk and the goal of finding the function that minimizes it. The lecture then covers empirical risk minimization as an approach to approximate the optimal function by minimizing the empirical average of the loss. It delves into the strong law of large numbers and provides examples of empirical risk minimization in both parametric and non-parametric settings. The lecture concludes with discussions on estimators, loss functions, and the performance evaluation of maximum-likelihood estimators in various models.

Instructor
veniam esse ad id
Mollit nisi proident amet eiusmod est commodo dolor magna dolor irure. Commodo qui excepteur laboris cupidatat consequat aliquip do ipsum consectetur proident labore ipsum. Duis id aute laboris enim amet reprehenderit exercitation eiusmod occaecat consectetur elit eiusmod deserunt do. Enim aliqua elit cupidatat nostrud ea. Reprehenderit adipisicing consequat nisi sint officia incididunt.
Login to see this section
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.