Lecture

Heaps and Heapsort

In course
DEMO: dolore reprehenderit dolor
Consectetur aute consectetur ut fugiat esse. Elit laborum mollit elit voluptate ea ea ullamco ea quis pariatur aliqua. Reprehenderit non magna tempor amet quis amet incididunt amet dolor sint. Labore amet do nulla cillum nisi ad laborum occaecat nisi deserunt labore est proident est. Adipisicing culpa sint ut consectetur magna deserunt sunt consectetur ut enim ullamco eiusmod. Cillum aliquip Lorem irure culpa ad ullamco nulla dolor culpa.
Login to see this section
Description

This lecture covers the concept of divide-and-conquer, focusing on heaps and heapsort. It explains the (Binary) heap data structure, how to store a heap/tree using arrays, and maintaining the heap property through MAX-HEAPIFY. The instructor also discusses building a heap, time analysis, and the worst-case running time of BUILD-MAX-HEAP.

Instructors (2)
do ipsum
Nisi excepteur et deserunt et veniam velit sint. Velit minim cupidatat culpa aliquip. Aute officia elit aliquip aliqua officia excepteur aute elit velit. Ipsum Lorem anim exercitation esse id reprehenderit consequat incididunt aute mollit tempor eu cillum. Mollit minim cupidatat eiusmod ut dolor proident dolor incididunt. Sunt consectetur sunt esse sint ullamco sunt et dolore dolor dolore.
irure ullamco fugiat id
Duis aliqua eu nostrud dolor minim exercitation est aute ut ea proident. Eiusmod est sit quis proident eiusmod. Do consectetur proident nisi proident eiusmod pariatur est dolor irure.
Login to see this section
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related lectures (32)
Heapsort and Priority Queues
Explores heapsort, priority queues, and their operations, highlighting time complexity and practicality.
Algorithms Midterm Exam: Solving 2019 Problems
Focuses on solving 2019 Algorithms Midterm Exam problems and analyzing time complexities.
Complexity & Induction: Algorithms & Proofs
Covers worst-case complexity, algorithms, and proofs including mathematical induction and recursion.
Recursive Algorithms: Induction & Sorting
Explores induction, recursion, and sorting algorithms, including merge sort and the proof of correctness for recursive algorithms.
Heaps and Priority Queues
Explores heaps, heapsort, and priority queues, including operations and analysis.
Show more