Publication

A voltage uniformity study in large-area reactors for RF plasma deposition

Abstract

Non-uniform voltage distribution across the electrode area results in inhomogeneous thin-film RF plasma deposition in large-area reactors. In this work, a two-dimensional analytic model for the calculation of the voltage distribution across the electrode area is presented. The results of this model are in good agreement with measurements performed without plasma at 13.56 MHz and 70 MHz in a large-area reactor. The principal voltage inhomogeneities are caused by logarithmic singularities in the vicinity of RF connections and not by standing waves. These singularities are only described by a two-dimensional model and cannot be intuitively predicted by analogy to a one-dimensional case. Plasma light emission measurements and thickness homogeneity studies of a-Si:H deposited films show that the plasma reproduces these voltage inhomogeneities. Improvement of the voltage uniformity is investigated by changing the number and position of the RF connections.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.