Publication

From Differential Equations to the Construction of New Wavelet-Like Bases

Michaël Unser, Ildar Khalidov
2006
Journal paper
Abstract

In this paper, an approach is introduced based on differential operators to construct wavelet-like basis functions. Given a differential operator L with rational transfer function, elementary building blocks are obtained that are shifted replicates of the Green's function of L. It is shown that these can be used to specify a sequence of embedded spline spaces that admit a hierarchical exponential B-spline representation. The corresponding B-splines are entirely specified by their poles and zeros; they are compactly supported, have an explicit analytical form, and generate multiresolution Riesz bases. Moreover, they satisfy generalized refinement equations with a scale-dependent filter and lead to a representation that is dense in L2L _{ 2 } . This allows us to specify a corresponding family of semi-orthogonal exponential spline wavelets, which provides a major extension of earlier polynomial spline constructions. These wavelets are completely characterized, and it is proven that they satisfy the following remarkable properties: 1) they are orthogonal across scales and generate Riesz bases at each resolution level; 2) they yield unconditional bases of L2L _{ 2 } -either compactly supported (B-spline-type) or with exponential decay (orthogonal or dual-type); 3) they have N vanishing exponential moments, where N is the order of the differential operator; 4) they behave like multiresolution versions of the operator L from which they are derived; and 5) their order of approximation is (N − M), where N and M give the number of poles and zeros, respectively. Last but not least, the new wavelet-like decompositions are as computationally efficient as the classical ones. They are computed using an adapted version of Mallat's filterbank algorithm, where the filters depend on the decomposition level.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related concepts (35)
Linear differential equation
In mathematics, a linear differential equation is a differential equation that is defined by a linear polynomial in the unknown function and its derivatives, that is an equation of the form where a0(x), ..., an(x) and b(x) are arbitrary differentiable functions that do not need to be linear, and y′, ..., y(n) are the successive derivatives of an unknown function y of the variable x. Such an equation is an ordinary differential equation (ODE).
Wavelet
A wavelet is a wave-like oscillation with an amplitude that begins at zero, increases or decreases, and then returns to zero one or more times. Wavelets are termed a "brief oscillation". A taxonomy of wavelets has been established, based on the number and direction of its pulses. Wavelets are imbued with specific properties that make them useful for signal processing. For example, a wavelet could be created to have a frequency of Middle C and a short duration of roughly one tenth of a second.
Differential operator
In mathematics, a differential operator is an operator defined as a function of the differentiation operator. It is helpful, as a matter of notation first, to consider differentiation as an abstract operation that accepts a function and returns another function (in the style of a higher-order function in computer science). This article considers mainly linear differential operators, which are the most common type. However, non-linear differential operators also exist, such as the Schwarzian derivative.
Show more
Related publications (62)

Probabilistic and Bayesian methods for uncertainty quantification of deterministic and stochastic differential equations

Giacomo Garegnani

In this thesis we explore uncertainty quantification of forward and inverse problems involving differential equations. Differential equations are widely employed for modeling natural and social phenomena, with applications in engineering, chemistry, meteor ...
EPFL2021

Wavelet-Fourier CORSING techniques for multidimensional advection-diffusion-reaction equations

Fabio Nobile, Simone Brugiapaglia

We present and analyze a novel wavelet-Fourier technique for the numerical treatment of multidimensional advection–diffusion–reaction equations based on the COmpRessed SolvING (CORSING) paradigm. Combining the Petrov–Galerkin technique with the compressed ...
2020

On the stability of blowup solutions for the critical corotational wave-map problem

Joachim Krieger, Shuang Miao

We show that the finite time blow up solutions for the co-rotational Wave Maps problem constructed in [7,15] are stable under suitably small perturbations within the co-rotational class, provided the scaling parameter λ(t)=t1νλ(t)=t−1−ν is sufficiently close to ...
2020
Show more
Related MOOCs (32)
Algebra (part 1)
Un MOOC francophone d'algèbre linéaire accessible à tous, enseigné de manière rigoureuse et ne nécessitant aucun prérequis.
Algebra (part 1)
Un MOOC francophone d'algèbre linéaire accessible à tous, enseigné de manière rigoureuse et ne nécessitant aucun prérequis.
Algebra (part 2)
Un MOOC francophone d'algèbre linéaire accessible à tous, enseigné de manière rigoureuse et ne nécessitant aucun prérequis.
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.