Publication

Ground state properties of large atoms and quantum dots

Rico Rueedi
2009
EPFL thesis
Abstract

We investigate the ground state properties of large atoms and quantum dots described by a d-dimensional N-body Hamiltonian of confinement ZV. In atoms, d = 3 and V is the Coulomb interaction; in dots, d = 2 and V is phenomenologically determined. We express the grand-canonical partition function in a path integral approach, and evaluate its expansion in Z-1. The problem can be seen as that of field theory possessing a saddle point. This saddle point results in a mean-field contribution to the energy, while the fluctuations result in the correlation energy. The mean-field contribution to the energy is self-consistently determined by the Hartree potential and contains an exchange term. Its smooth contribution is evaluated by a semiclassical method, with ε = Z-1/d in the role of ℏ, while its oscillating contribution can be related to the periodic orbits in the corresponding classical Hamiltonian. In the case of atoms, the leading order in ε of the correlation energy contains a term in Z ln Z1/3, which is essential in reproducing the behaviour shown by reference values, and a term in Z. While we have evaluated the contribution to the Z-term provided by the leading fluctuation order, the numerical evaluation of the contributions provided by higher order fluctuations remains an open problem. The self-consistent contribution to the energy corresponds to the statistical atom, composed of Thomas-Fermi and its corrections, comprehensively analysed, including oscillations, by Schwinger and Englert. In the case of dots, the leading order in ε of the correlation energy is a universal contribution of order Z, which we obtain in closed form. We then determine the expansion in ε of the smooth contributions down to this correlation order. We apply the approach to dots of quadratic and quartic confinement, including the oscillating contribution in the case of a chaotic quartic confinement.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.