Publication

Entrainment of floating granules behind a barrier

Anton Schleiss, Azin Amini
2009
Journal paper
Abstract

To simulate the retaining capacity of an oil barrier in an uniform flow field, experiments were carried out in a laboratory flume at Ecole Polytechnique Federale de Lausanne (EPFL), Laboratory of Hydraulic Constructions (LCH) by using Light Expanded Clay Aggregates (LECA) and plastic particles. It was demonstrated that under appropriate assumptions for the effects of buoyancy and gravity forces, the Shields approach is suitable to predict both the entrainment of suspended granules behind a barrier and the start of leakage underneath. The phenomenon was also simulated numerically with a multiphase model using a CFD code, Fluent, and the results were compared to those of the physical experiments. The "Eulerian model" multiphase model of FLUENT was selected to simulate the phenomenon. The numerical model successfully predicts the evolution of the slick shape behind the barrier for various flow conditions. The amount of LECA that leaked from the barrier agreed well with the experimental observations.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.