Are you an EPFL student looking for a semester project?
Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.
Demonstration learning is a powerful and practical technique to develop robot behaviors. Even so, development remains a challenge and possible demonstration limitations, for example correspondence issues between the robot and demonstrator, can degrade policy performance. This work presents an approach for policy improvement through a tactile interface located on the body of the robot. We introduce the Tactile Policy Correction (TPC) algorithm, that employs tactile feedback for the refinement of a demonstrated policy, as well as its reuse for the development of other policies. The TPC algorithm is validated on humanoid robot performing grasp positioning tasks. The performance of the demonstrated policy is found to improve with tactile corrections. Tactile guidance also is shown to enable the development of policies able to successfully execute novel, undemonstrated, tasks. We further show that different modalities, namely teleoperation and tactile control, provide information about allowable variability in the target behavior in different areas of the state space.
Pierre Dillenbourg, Elmira Yadollahi, Ana Paiva