Publication

Existence And Stability Of High Frequency Standing Waves For A Nonlinear Schrodinger Equation

Résumé

This article is concerned with the existence and orbital stability of standing waves for a nonlinear Schrodinger equation (NLS) with a nonautonomous nonlinearity. It continues and concludes the series of papers [6, 7, 8]. In [6], the authors make use of a continuation argument to establish the existence in R x H-1(R-N) of a smooth local branch of solutions to the stationary elliptic problem associated with (NLS) and hence the existence of standing wave solutions of (NLS) with small frequencies. Complementary conditions on the nonlinearity are found, under which either stability of the standing waves and bifurcation of the branch of solutions from the point (0, 0) is an element of R x H-1 (R-N) occur, or instability and asymptotic bifurcation occur. The main hypotheses in [6] concern the behaviour of the nonlinearity with respect to the space variable at infinity. The paper [7] extends the results of [6] to (NLS) with more general nonlinearities. In [8], the global continuation of the local branch obtained in [6] is proved under additional hypotheses on the nonlinearity. In particular, spherical symmetry with respect to the space variable is assumed. The aim of the present work is to prove the existence and discuss the orbital stability of standing waves with high frequencies, independently of the results obtained in [6] and [8]. The main hypotheses now concern the behaviour of the nonlinearity with respect to the space variable around the origin. The methods are the same in spirit as that of [6] and permit to discuss the asymptotic behaviour of the global branch of solutions obtained in [8].

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.