Publication

Interface States and Trapping Effects in Al1O3- and ZrO2/InAlN/AlN/GaN Metal-Oxide-Semiconductor Heterostructures

Abstract

We investigate Al2O3- and ZrO2/InAlN/GaN metal-oxide-semiconductor heterostructures (MOS-H) using capacitance-time transients in the temperature range of 25-300 degrees C. A deep-level transient spectroscopy based analysis revealed the maximum interface state density distributions D-it(E) up to 3 x 10(13) and 1 X 10(13) eV(-1) cm(-2) for the Al2O3/InAlN and ZrO2/InAlN interface, respectively. The integral densities of interface states correlate well with the trapping-related gate-lag effect in corresponding InAlN/GaN MOS high electron mobility transistors (HEMTs). This explains the strongly reduced lag effect in ZrO2 MOS HEMTs. We assume hole trapping at oxide/InAlN interface to be a dominant effect responsible for the gate-lag effect in InAlN/GaN MOS HEMTs. (C) 2009 The Japan Society of Applied Physics 10.1143/JJAP.48.090201

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.