Publication

A mealy machine with polynomial growth of irrational degree

2008
Journal paper
Abstract

We consider a very simple Mealy machine ( two nontrivial states over a two-symbol alphabet), and derive some properties of the semigroup it generates. It is an infinite, finitely generated semigroup, and we show that the growth function of its balls behaves asymptotically like l(alpha), for alpha = 1 + log 2/log 1+root 5/2 ; that the semigroup satisfies the identity g(6) = g(4); and that its lattice of two-sided ideals is a chain.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.