Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
This paper reports on the factorization of the 768-bit number RSA-768 by the number field sieve factoring method and discusses some implications for RSA.
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
En théorie des nombres, l'algorithme du crible du corps de nombres généralisé (GNFS) obtient la décomposition d'un entier en produit de facteurs premiers. C'est à l'heure actuelle (2018) l'algorithme le plus efficace connu pour obtenir cette décomposition, lorsque le nombre considéré est assez grand, c'est-à-dire au-delà d'environ 10100, et ne possède pas de structure remarquable. Cette efficacité est due pour partie à l'utilisation d'une méthode de crible et pour partie à l'utilisation d'algorithmes efficaces pour certaines opérations (comme la manipulation de matrices creuses).
Le crible spécial de corps de nombres (SNFS) est un algorithme spécialisé de factorisation en nombres premiers d'un entier naturel. Lorsque la locution « crible de corps de nombres » est utilisée sans la mention spécial ou général, elle se réfère au GNFS, le crible général de corps de nombres. Le crible spécial de corps de nombres est efficace pour les entiers de la forme r ± s, où r et s sont petits. Il est donc particulièrement recommandé pour factoriser les nombres de Fermat et les nombres de Mersenne.
L'algorithme du crible quadratique est un algorithme de factorisation fondé sur l'arithmétique modulaire. C'est en pratique le plus rapide après le crible général des corps de nombres, lequel est cependant bien plus compliqué, et n'est plus performant que pour factoriser un nombre entier d'au moins cent chiffres. Le crible quadratique est un algorithme de factorisation non spécialisé, c'est-à-dire que son temps d'exécution dépend uniquement de la taille de l'entier à factoriser, et non de propriétés particulières de celui-ci.
This paper reports on the number field sieve computation of a 768-bit prime field discrete logarithm, describes the different parameter optimizations and resulting algorithmic changes compared to the factorization of a 768-bit RSA modulus, and briefly disc ...
The RSA cryptosystem introduced in 1977 by Ron Rivest, Adi Shamir and Len Adleman is the most commonly deployed public-key cryptosystem. Elliptic curve cryptography (ECC) introduced in the mid 80's by Neal Koblitz and Victor Miller is becoming an increasin ...
We consider fundamental algorithmic number theoretic problems and their relation to a class of block structured Integer Linear Programs (ILPs) called 2-stage stochastic. A 2-stage stochastic ILP is an integer program of the form min{c(T)x vertical bar Ax = ...