Publication

Selfish Response to Epidemic Propagation

Abstract

An epidemic spreading in a network calls for a decision on the part of the network members: They should decide whether to protect themselves or not. Their decision depends on the trade off between their perceived risk of being infected and the cost of being protected. The network members can make decisions repeatedly, based on information that they receive about the changing infection level in the network. We study the equilibrium states reached by a network whose members increase (resp. decrease) their security deployment when learning that the network infection is higher (resp. lower). Our main result is that as the learning rate of the members increases, the equilibrium level of infection increases. We demonstrate this result both when members are strictly rational and when they are not. We characterize the domains of attraction of the equilibrium points. We validate our conclusions with simulations on human mobility traces.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.