The focus of this article is on the different behavior of large deviations of random functionals associated with the parabolic Anderson model above the mean versus large deviations below the mean. The functionals we treat are the solution u(x, t) to the spatially discrete parabolic Anderson model and a functional A (n) which is used in analyzing the a.s. Lyapunov exponent for u(x, t). Both satisfy a "law of large numbers", with lim(t ->infinity) 1/t log u (x, t) = lambda (kappa) and lim(n ->infinity) An/n = alpha. We then think of alpha n and lambda(kappa)t as being the mean of the respective quantities A (n) and log u(t, x). Typically, the large deviations for such functionals exhibits a strong asymmetry; large deviations above the mean take on a different order of magnitude from large deviations below the mean. We develop robust techniques to quantify and explain the differences.
Nicolas Lawrence Etienne Longeard
Matthias Finger, Qian Wang, Yiming Li, Varun Sharma, Konstantin Androsov, Jan Steggemann, Xin Chen, Rakesh Chawla, Matteo Galli, Jian Wang, João Miguel das Neves Duarte, Tagir Aushev, Matthias Wolf, Yi Zhang, Tian Cheng, Yixing Chen, Werner Lustermann, Andromachi Tsirou, Alexis Kalogeropoulos, Andrea Rizzi, Ioannis Papadopoulos, Paolo Ronchese, Hua Zhang, Siyuan Wang, Tao Huang, David Vannerom, Michele Bianco, Sebastiana Gianì, Sun Hee Kim, Kun Shi, Abhisek Datta, Federica Legger, Gabriele Grosso, Anna Mascellani, Ji Hyun Kim, Donghyun Kim, Zheng Wang, Sanjeev Kumar, Wei Li, Yong Yang, Ajay Kumar, Ashish Sharma, Georgios Anagnostou, Joao Varela, Csaba Hajdu, Muhammad Ahmad, Ioannis Evangelou, Milos Dordevic, Meng Xiao, Sourav Sen, Xiao Wang, Kai Yi, Jing Li, Rajat Gupta, Hui Wang, Seungkyu Ha, Pratyush Das, Anton Petrov, Xin Sun, Valérie Scheurer, Muhammad Ansar Iqbal
Athanasios Nenes, Romanos Foskinis, Kunfeng Gao