Publication

Online Model Estimation of Ultra-Wideband TDOA Measurements for Mobile Robot Localization

Abstract

Ultra-wideband (UWB) localization is a recent technology that promises to outperform many indoor localization methods currently available. Yet, non-line-of-sight (NLOS) positioning scenarios can create large biases in the time-difference-of-arrival (TDOA) measurements, and must be addressed with accurate measurement models in order to avoid significant localization errors. In this work, we first develop an efficient, closed-form TDOA error model and analyze its estimation characteristics by calculating the Cramer-Rao lower bound (CRLB). We subsequently detail how an online Expectation Maximization (EM) algorithm is adopted to find an elegant formalism for the maximum likelihood estimate of the model parameters. We perform real experiments on a mobile robot equipped with an UWB emitter, and show that the online estimation algorithm leads to excellent localization performance due to its ability to adapt to the varying NLOS path conditions over time.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.