A mobile robot is an automatic machine that is capable of locomotion. Mobile robotics is usually considered to be a subfield of robotics and information engineering.
Mobile robots have the capability to move around in their environment and are not fixed to one physical location. Mobile robots can be "autonomous" (AMR - autonomous mobile robot) which means they are capable of navigating an uncontrolled environment without the need for physical or electro-mechanical guidance devices. Alternatively, mobile robots can rely on guidance devices that allow them to travel a pre-defined navigation route in relatively controlled space. By contrast, industrial robots are usually more-or-less stationary, consisting of a jointed arm (multi-linked manipulator) and gripper assembly (or end effector), attached to a fixed surface. The joint.
Mobile robots have become more commonplace in commercial and industrial settings. Hospitals have been using autonomous mobile robots to move materials for many years. Warehouses have installed mobile robotic systems to efficiently move materials from stocking shelves to order fulfillment zones. Mobile robots are also a major focus of current research and almost every major university has one or more labs that focus on mobile robot research. Mobile robots are also found in industrial, military and security settings.
The components of a mobile robot are a controller, sensors, actuators and power system. The controller is generally a microprocessor, embedded microcontroller or a personal computer (PC). The sensors used are dependent upon the requirements of the robot. The requirements could be dead reckoning, tactile and proximity sensing, triangulation ranging, collision avoidance, position location and other specific applications. Actuators usually refer to the motors that move the robot can be wheeled or legged. To power a mobile robot usually we use DC power supply (which is battery) instead of AC.
Mobile robots may be classified by:
The environment in which they travel:
Land or home robots are usually referred to as Unmanned Ground Vehicles (UGVs).
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Robotics is an interdisciplinary branch of electronics and communication, computer science and engineering. Robotics involves the design, construction, operation, and use of robots. The goal of robotics is to design machines that can help and assist humans. Robotics integrates fields of mechanical engineering, electrical engineering, information engineering, mechatronics engineering, electronics, biomedical engineering, computer engineering, control systems engineering, software engineering, mathematics, etc.
Robotic mapping is a discipline related to computer vision and cartography. The goal for an autonomous robot is to be able to construct (or use) a map (outdoor use) or floor plan (indoor use) and to localize itself and its recharging bases or beacons in it. Robotic mapping is that branch which deals with the study and application of ability to localize itself in a map / plan and sometimes to construct the map or floor plan by the autonomous robot. Evolutionarily shaped blind action may suffice to keep some animals alive.
iRobot Corporation is an American technology company that designs and builds consumer robots. It was founded in 1990 by three members of MIT's Artificial Intelligence Lab, who designed robots for space exploration and military defense. The company's products include a range of autonomous home vacuum cleaners (Roomba), floor moppers (Braava), and other autonomous cleaning devices. In August 2022, Amazon.com, Inc. announced its intent to acquire iRobot for US$1.
On propose dans ce MOOC de se former à et avec Thymio :
apprendre à programmer le robot Thymio et ce faisant, s’initier
à l'informatique et la robotique.
In diesem Kurs handelt es sich um das Verständnis der grundlegenden Mechanismen eines Roboters wie Thymio, seiner Programmierung mit verschiedenen Sprachen und seiner Verwendung im Unterricht mit den
In diesem Kurs handelt es sich um das Verständnis der grundlegenden Mechanismen eines Roboters wie Thymio, seiner Programmierung mit verschiedenen Sprachen und seiner Verwendung im Unterricht mit den
The course provides an introduction to the design, control, and applications of aerial robots. Students will be able to translate theoretical concepts into practice by means of hands-on exercises with
The goal of this lab series is to practice the various theoretical frameworks acquired in the courses on a variety of robots, ranging from industrial robots to autonomous mobile robots, to robotic dev
Covers compliant and force control for robots using Dynamical Systems.
Explores training robots through reinforcement learning and learning from demonstration, highlighting challenges in human-robot interaction and data collection.
Explores learning and adaptive control for robots, focusing on challenges, path planning with dynamical systems, and real-time planning applications.
Robots outside of the fenced factories have to deal with continuously changing environment, this requires fast and flexible modes of control. Planning methods or complex learning models can find optimal paths in complex surroundings, but they are computati ...
Given the patchy nature of gas plumes and the slow response of conventional gas sensors, the use of mobile robots for Gas Source Localization (GSL) tasks presents significant challenges. These aspects increase the difficulties in obtaining gas measurement ...
This doctoral thesis navigates the complex landscape of motion coordination and formation control within teams of rotary-wing Micro Aerial Vehicles (MAVs). Prompted by the intricate demands of real-world applications such as search and rescue or surveillan ...