Publication

Enhanced Second Harmonic Generation in Plasmonic Nanocavities

Abstract

We experimentally demonstrate significantly enhanced second harmonic generation using nanoengineered plasmonic nanocavities of core-shell structures (BaTiO3/Au). An enhancement factor of over 500 is measured in the second harmonic scattering efficiency compared to the bare core. (C) 2009 Optical Society of America

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related concepts (9)
Nonlinear optics
Nonlinear optics (NLO) is the branch of optics that describes the behaviour of light in nonlinear media, that is, media in which the polarization density P responds non-linearly to the electric field E of the light. The non-linearity is typically observed only at very high light intensities (when the electric field of the light is >108 V/m and thus comparable to the atomic electric field of ~1011 V/m) such as those provided by lasers. Above the Schwinger limit, the vacuum itself is expected to become nonlinear.
Second-harmonic generation
Second-harmonic generation (SHG, also called frequency doubling) is a nonlinear optical process in which two photons with the same frequency interact with a nonlinear material, are "combined", and generate a new photon with twice the energy of the initial photons (equivalently, twice the frequency and half the wavelength), that conserves the coherence of the excitation. It is a special case of sum-frequency generation (2 photons), and more generally of harmonic generation.
High harmonic generation
High harmonic generation (HHG) is a non-linear process during which a target (gas, plasma, solid or liquid sample) is illuminated by an intense laser pulse. Under such conditions, the sample will emit the high harmonics of the generation beam (above the fifth harmonic). Due to the coherent nature of the process, high harmonics generation is a prerequisite of attosecond physics. Perturbative harmonic generation is a process whereby laser light of frequency ω and photon energy ħω can be used to generate new frequencies of light.
Show more
Related publications (32)

Progress and prospects in nonlinear extreme-ultraviolet and X-ray optics and spectroscopy

Majed Chergui

Free-electron lasers and high-harmonic-generation table-top systems are new sources of extreme-ultraviolet to hard X-ray photons, providing ultrashort pulses that are intense, coherent and tunable. They are enabling a broad range of nonlinear optical and s ...
NATURE PORTFOLIO2023

Nonlinear Frequency Conversion in III-Nitride Doubly Resonant Photonic Crystal Cavities

Jun Wang

Nonlinear frequency conversion processes, such as second-harmonic generation (SHG) and spontaneous parametric down-conversion (SPDC), are essential in many applications, including the generation of entangled photons. It's desirable to enhance these process ...
EPFL2023

Optically reconfigurable quasi-phase-matching in silicon nitride microresonators

Camille Sophie Brès, Jianqi Hu, Anton Stroganov, Edgars Nitiss

Quasi-phase-matching has long been a widely used approach in nonlinear photonics, enabling efficient parametric frequency conversions such as second-harmonic generation. However, in silicon photonics the task remains challenging, as materials best suited f ...
2022
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.