Publication

Inductive Power Link for a Wireless Cortical Implant With Two-Body Packaging

Abstract

This paper presents an inductive power link for remote powering of a wireless cortical implant. The link includes a Class-E power amplifier, a gate driver, an inductive link, and an integrated rectifier. The coils of the inductive link are designed and optimized for remote powering from a distance of 10 mm (scalp thickness). The power amplifier is designed in order to allow closed-loop control of the power delivered to the implant, by controlling the supply voltage. Moreover, a gate driver is added to the system to drive the power amplifier and to characterize the gate losses. A new packaging topology is proposed in order to position the implant inside a hole in the cranial bone, without occupying a large area, but still obtaining a short distance between the remote powering coils. The package is fabricated by using biocompatible materials such as PDMS and Parylene-C. The power efficiency of the remote powering link is characterized for a wide range of load power (1-20 mW) delivered from the rectifier and is measured to be 24.6% at nominal load of 10 mW.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.