Publication

Rotation studies in electron Internal Transport Barriers on TCV

Abstract

This paper reports simultaneous measurements of intrinsic toroidal and poloidal plasma rotation during the evolution of electron Internal Transport Barriers (eITBs) on TCV. A CXRS diagnostic-beam system provides ion parameter profiles for stationary pre-barrier formation and eITB sustainment phases with a 15mm spatial resolution across the entire barrier width. This special configuration is used to assess the role of Er and E ×B shearing for the eITBs sustainment and formation in TCV. Two eITBs targets were developed either by applying central counter-ECCD with off-axis ECH, giving a central barrier, or off-axis co-ECCD with central ECH/counter-ECCD. The first target, characterized by a central Te barrier, is used to study the evolution of the rotation and Er with respect to the development of MHD modes, ECH power and plasma density. MHD modes cause a toroidal rotation reversal leading to increasingly positive Er. When applying central counter-ECCD, a peaked counter current rotation is sustained in the core with rotation values approximately doubled compared with the ECH phase where both cases have flat Er profiles. This shows experimentally for the first time on TCV that the E ×B shearing does not influence the eITB.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.