Publication

50 nm thick AlN film-based piezoelectric cantilevers for gravimetric detection

Abstract

Due to low power operation, intrinsic integrability and compatibility with CMOS processing, aluminum nitride (AlN) piezoelectric (PZE) microcantilevers are a very attractive paradigm for resonant gas sensing. In this paper, we theoretically investigate their ultimate limit of detection and enunciate design rules for performance optimization. The reduction of the AlN layer thickness is found to be critical. We further report the successful development and implementation in cantilever structures with a 50 nm thick active PZE AlN layer. Material characterizations demonstrate that the PZE e(31) coefficient can remain as high as 0.8Cm(-2). Electrically transduced frequency responses of the fabricated devices are in good agreement with analytical predictions. Finally, we demonstrate the excellent frequency stability with a 10(-8) minimum Allan deviation. This exceptionally low noise operation allows us to expect a limit of detection as low as 53 zg mu m(-2) and demonstrate the strong potential of AlN PZE microcantilevers for high resolution gas detection.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.