Êtes-vous un étudiant de l'EPFL à la recherche d'un projet de semestre?
Travaillez avec nous sur des projets en science des données et en visualisation, et déployez votre projet sous forme d'application sur Graph Search.
We report the large-signal performance of high electron mobility transistors (HEMTs) fabricated on GaN- and AlN-capped AlInN/GaN epilayers grown on semi-insulating SiC substrates. Large-signal measurements at 10 and 40 GHz are presented with both gate and drain dynamic loadlines to clarify the factors limiting the high-power performance. Devices fabricated with AlN-capped epilayers show a marginal advantage in terms of higher current and reduced dispersion, but GaN-capped epilayers perform better in terms of reduced short-channel effects and better channel control. In large-signal operation at 40 GHz, both device types delivered power densities in excess of 4.5 W/mm. A maximum power density of 5.8 W/mm is achieved on GaN-capped devices which is, to the best of our knowledge, the highest power density reported at 40 GHz in AlInN/GaN-based HEMTs.