Publication

Finding Audio-Visual Events in Informal Social Gatherings

2011
Conference paper
Abstract

In this paper we address the problem of detecting and localizing objects that can be both seen and heard, e.g., people. This may be solved within the framework of data clustering. We propose a new multimodal clustering algorithm based on a Gaussian mixture model, where one of the modalities (visual data) is used to supervise the clustering process. This is made possible by mapping both modalities into the same metric space. To this end, we fully exploit the geometric and physical properties of an audio-visual sensor based on binocular vision and binaural hearing. We propose an EM algorithm that is theoretically well justified, intuitive, and extremely efficient from a computational point of view. This efficiency makes the method implementable on advanced platforms such as humanoid robots. We describe in detail tests and experiments performed with publicly available data sets that yield very interesting results.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.