Are you an EPFL student looking for a semester project?
Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.
An experimental investigation is conducted to study the quasi-static and dynamic fracture behaviour of sedimentary, igneous and metamorphic rocks. The notched semi-circular bending method has been employed to determine fracture parameters over a wide range of loading rates using both a servo-hydraulic machine and a split Hopkinson pressure bar. The time to fracture, crack speed and velocity of the flying fragment are measured by strain gauges, crack propagation gauge and high-speed photography on the macroscopic level. Dynamic crack initiation toughness is determined from the dynamic stress intensity factor at the time to fracture, and dynamic crack growth toughness is derived by the dynamic fracture energy at a specific crack speed. Systematic fractographic studies on fracture surface are carried out to examine the micromechanisms of fracture. This study reveals clearly that: (1) the crack initiation and growth toughness increase with increasing loading rate and crack speed; (2) the kinetic energy of the flying fragments increases with increasing striking speed; (3) the dynamic fracture energy increases rapidly with the increase of crack speed, and a semi-empirical rate-dependent model is proposed; and (4) the characteristics of fracture surface imply that the failure mechanisms depend on loading rate and rock microstructure.
Brice Tanguy Alphonse Lecampion, Carlo Peruzzo
Alexandra Roma Larisa Kushnir, Michael Heap