Publication

Nonlinear motion and mechanical mixing in as-grown GaAs nanowires

Abstract

We report nonlinear behavior in the motion of driven nanowire cantilevers. The nonlinearity can be described by the Duffing equation and is used to demonstrate mechanical mixing of two distinct excitation frequencies. Furthermore, we demonstrate that the nonlinearity can be used to amplify a signal at a frequency close to the mechanical resonance of the nanowire oscillator. Up to 26 dB of amplitude gain is demonstrated in this way. (C) 2014 AIP Publishing LLC.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related concepts (19)
Nanowire
A nanowire is a nanostructure in the form of a wire with the diameter of the order of a nanometre (10−9 metres). More generally, nanowires can be defined as structures that have a thickness or diameter constrained to tens of nanometers or less and an unconstrained length. At these scales, quantum mechanical effects are important—which coined the term "quantum wires". Many different types of nanowires exist, including superconducting (e.g. YBCO), metallic (e.g. Ni, Pt, Au, Ag), semiconducting (e.g.
Molecular-beam epitaxy
Molecular-beam epitaxy (MBE) is an epitaxy method for thin-film deposition of single crystals. MBE is widely used in the manufacture of semiconductor devices, including transistors, and it is considered one of the fundamental tools for the development of nanotechnologies. MBE is used to fabricate diodes and MOSFETs (MOS field-effect transistors) at microwave frequencies, and to manufacture the lasers used to read optical discs (such as CDs and DVDs). Original ideas of MBE process were first established by K.
Indium gallium arsenide
Indium gallium arsenide (InGaAs) (alternatively gallium indium arsenide, GaInAs) is a ternary alloy (chemical compound) of indium arsenide (InAs) and gallium arsenide (GaAs). Indium and gallium are group III elements of the periodic table while arsenic is a group V element. Alloys made of these chemical groups are referred to as "III-V" compounds. InGaAs has properties intermediate between those of GaAs and InAs. InGaAs is a room-temperature semiconductor with applications in electronics and photonics.
Show more
Related publications (34)

Synthesis and properties of heterostructures in nanowires and 2-D materials

Akshay Balgarkashi

Modern solid-state devices were made possible by the discovery of semiconductor heterostructures. Heterostructures offer the ability to fabricate low-dimensional nanostructures such as quantum dots which can restrain carriers in all three-directions. Quant ...
EPFL2022

Nanopillars Enabling III-V Integration on Si (100) and (111)

Lucas Güniat

The majority of current semiconductor technologies are built on Si (100), such as the CMOS technology, or conventional solar cell devices. III-V semiconductors offer great perspectives given their high carrier mobility and direct band gap. However their in ...
EPFL2021

Increasing Functionality of III-V Nanowires on Silicon Substrates

Wonjong Kim

Progress in nanotechnology, including fabrication and characterization tools, opened up the unprecedented low dimensional materials era, where we can manipulate and structure matter on a size scale that we could not reach before. Due to many interesting pr ...
EPFL2020
Show more
Related MOOCs (12)
Micro and Nanofabrication (MEMS)
Learn the fundamentals of microfabrication and nanofabrication by using the most effective techniques in a cleanroom environment.
Microstructure Fabrication Technologies I
Learn the fundamentals of microfabrication and nanofabrication by using the most effective techniques in a cleanroom environment.
Micro and Nanofabrication (MEMS)
Learn the fundamentals of microfabrication and nanofabrication by using the most effective techniques in a cleanroom environment.
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.