Publication

Continuous atomic displacements and lattice distortion during fcc–bcc martensitic transformation

Cyril Cayron
2015
Journal paper
Abstract

The continuous matrices of atomic displacements and lattice distortion from face-centered-cubic (fcc) to body-centered-cubic (bcc) phases compatible with the hard-sphere geometry of iron atoms are calculated for different possible final orientation relationships (ORs), such as Bain, Pitsch and Kurdjumov-Sachs (KS). The angular distortion introduced in the calculations appears as a natural order parameter of the fcc bcc transitions. The average atomic displacement is lower with Pitsch and KS ORs than for Bain; one of these two distortions probably constitutes the natural mechanism for stress-free isolated small crystals. For matrix-embedded transformations that occur in bulk steels, the distortion associated with KS OR seems very appropriate: it has special mathematical properties and can explain the (225) habit planes with a simple O-lattice criterion. From these calculations, the fcc bcc martensitic transformation appears to be "angular distortive", and not of "shear" type as usually assumed. (C) 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related concepts (32)
Cubic crystal system
In crystallography, the cubic (or isometric) crystal system is a crystal system where the unit cell is in the shape of a cube. This is one of the most common and simplest shapes found in crystals and minerals. There are three main varieties of these crystals: Primitive cubic (abbreviated cP and alternatively called simple cubic) Body-centered cubic (abbreviated cI or bcc) Face-centered cubic (abbreviated cF or fcc) Note: the term fcc is often used in synonym for the cubic close-packed or ccp structure occurring in metals.
Austenite
Austenite, also known as gamma-phase iron (γ-Fe), is a metallic, non-magnetic allotrope of iron or a solid solution of iron with an alloying element. In plain-carbon steel, austenite exists above the critical eutectoid temperature of 1000 K (727 °C); other alloys of steel have different eutectoid temperatures. The austenite allotrope is named after Sir William Chandler Roberts-Austen (1843–1902); it exists at room temperature in some stainless steels due to the presence of nickel stabilizing the austenite at lower temperatures.
Crystal twinning
Crystal twinning occurs when two or more adjacent crystals of the same mineral are oriented so that they share some of the same crystal lattice points in a symmetrical manner. The result is an intergrowth of two separate crystals that are tightly bonded to each other. The surface along which the lattice points are shared in twinned crystals is called a composition surface or twin plane. Crystallographers classify twinned crystals by a number of twin laws. These twin laws are specific to the crystal structure.
Show more
Related publications (36)

Theory of kink migration in dilute BCC alloys

William Curtin, Alireza Ghafarollahi

Plastic deformation in elemental BCC metals and dilute alloys is controlled by the slower of the kink pair nucleation and kink migration processes along screw dislocations. In alloys nucleation is facilitated and migration inhibited, leading to a concentra ...
2021

Measurement and prediction of the transformation strain that controls ductility and toughness in advanced steels

William Curtin, Helena Van Swygenhoven, Efthymios Polatidis, Francesco Maresca

New-generation multi-phase martensitic steels derive their high strength from the body-centered cubic (BCC) phase and high toughness from transformation of the metastable face-centered cubic (FCC) austenite that transforms into martensite upon loading. In ...
PERGAMON-ELSEVIER SCIENCE LTD2020

Theory of screw dislocation strengthening in random BCC alloys from dilute to "High-Entropy" alloys

William Curtin, Francesco Maresca

Random body-centered-cubic (BCC) "High Entropy" alloys are a new class of alloys, some having high strength and good ductility at room temperature and some having exceptional high-temperature strength. There are no theories of strengthening of screw disloc ...
PERGAMON-ELSEVIER SCIENCE LTD2020
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.