Publication

Microfluidic device and method for isolation of nucleic acids

Abstract

The present invention concerns a microfluidic device for mechanically induced trapping of molecular interactions comprising at least a first unit cell and a second unit cell, each unit cell comprising - a membrane chamber comprising a membrane, - a flow channel crossing the membrane chamber and having an inlet and an outlet, and the flow channel crossing the first unit cell being different from the flow channel crossing the second unit cell. Another object of the invention is a method for isolation of specifically bound nucleic acids to target molecules on said microfluidic device followed by its recovery and identification.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Ontological neighbourhood
Related concepts (28)
Cell membrane
The cell membrane (also known as the plasma membrane or cytoplasmic membrane, and historically referred to as the plasmalemma) is a biological membrane that separates and protects the interior of a cell from the outside environment (the extracellular space). The cell membrane consists of a lipid bilayer, made up of two layers of phospholipids with cholesterols (a lipid component) interspersed between them, maintaining appropriate membrane fluidity at various temperatures.
Membrane
A membrane is a selective barrier; it allows some things to pass through but stops others. Such things may be molecules, ions, or other small particles. Membranes can be generally classified into synthetic membranes and biological membranes. Biological membranes include cell membranes (outer coverings of cells or organelles that allow passage of certain constituents); nuclear membranes, which cover a cell nucleus; and tissue membranes, such as mucosae and serosae.
Membrane technology
Membrane technology encompasses the scientific processes used in the construction and application of membranes. Membranes are used to facilitate the transport or rejection of substances between mediums, and the mechanical separation of gas and liquid streams. In the simplest case, filtration is achieved when the pores of the membrane are smaller than the diameter of the undesired substance, such as a harmful microorganism.
Show more
Related publications (98)

Micro- or nanostructured optical element

Niels Quack, Dorian Giraud Herle

A micro- or nanostructured optical element (1) is proposed comprising: a membrane (3) with an array of holes (5), the membrane (3) comprising a membrane light wave facing surface; an array of pillars (7) sized and shaped such that a respective pillar (7) i ...
2023

Homogenization theory captures macroscopic flow discontinuities across Janus membranes

François Gallaire, Pier Giuseppe Ledda, Giuseppe Antonio Zampogna, Kevin Wittkowski

Janus membranes, thin permeable structures with chemical and geometrical asymmetric properties, show great potential in industrial separation processes. Yet the link between the micro- and macro-scale behaviours of these membranes needs to be established r ...
CAMBRIDGE UNIV PRESS2023

Microfluidics Approach to the Mechanical Properties of Red Blood Cell Membrane and Their Effect on Blood Rheology

Ignacio Pagonabarraga Mora

In this article, we describe the general features of red blood cell membranes and their effect on blood flow and blood rheology. We first present a basic description of membranes and move forward to red blood cell membranes' characteristics and modeling. W ...
MDPI2022
Show more
Related MOOCs (25)
Water quality and the biogeochemical engine
Learn about how the quality of water is a direct result of complex bio-geo-chemical interactions, and about how to use these processes to mitigate water quality issues.
Simulation Neurocience
Learn how to digitally reconstruct a single neuron to better study the biological mechanisms of brain function, behaviour and disease.
Simulation Neurocience
Learn how to digitally reconstruct a single neuron to better study the biological mechanisms of brain function, behaviour and disease.
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.