Are you an EPFL student looking for a semester project?
Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.
Through judicious molecular engineering, novel dopant-free star-shaped D-pi-A type hole transporting materials coded KR355, KR321, and KR353 were systematically designed, synthesized and characterized. KR321 has been revealed to form a particular face-on organization on perovskite films favoring vertical charge carrier transport and for the first time, we show that this particular molecular stacking feature resulted in a power conversion efficiency over 19% in combination with mixed-perovskite (FAPbI(3))(0.85)(MAPbBr)(0.15). The obtained 19% efficiency using a pristine hole transporting layer without any chemical additives or doping is the highest, establishing that the molecular engineering of a planar donor core, p-spacer and periphery acceptor leads to high mobility, and the design provides useful insight into the synthesis of next-generation HTMs for perovskite solar cells and optoelectronic applications.
Mohammad Khaja Nazeeruddin, Jianxing Xia, Ruiyuan Hu