Are you an EPFL student looking for a semester project?
Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.
The functionalities and performances of today's computing systems are increasingly dependent on the memory block. This phenomenon, also referred as the Von Neumann bottleneck, is the main motivation for the research on memory technologies. Despite CMOS technology has been improved in the last 50 years by continually increasing the device density, today's mainstream memories, such as SRAM, DRAM and Flash, are facing fundamental limitations to continue this trend. These memory technologies, based on charge storage mechanisms, are suffering from the easy loss of the stored state for devices scaled below 10 nm. This results in a degradation of the performance, reliability and noise margin. The main motivation for the development of emerging non volatile memories is the study of a different mechanism to store the digital state in order to overcome this challenge. Among these emerging technologies, one of the strongest candidate is Resistive Random Access Memory (ReRAM), which relies on the formation or rupture of a conductive filament inside a dielectric layer. This thesis focuses on the fabrication, characterization and integration of ReRAM devices. The main subject is the qualitative and quantitative description of the main factors that influence the resistive memory electrical behavior. Such factors can be related either to the memory fabrication or to the test environment. The first category includes variations in the fabrication process steps, in the device geometry or composition. We discuss the effect of each variation, and we use the obtained database to gather insights on the ReRAM working mechanism and the adopted methodology by using statistical methods. The second category describes how differences in the electrical stimuli sent to the device change the memory performances. We show how these factors can influence the memory resistance states, and we propose an empirical model to describe such changes. We also discuss how it is possible to control the resistance states by modulating the number of input pulses applied to the device. In the second part of this work, we present the integration of the fabricated devices in a CMOS technology environment. We discuss a Verilog-A model used to simulate the device characteristics, and we show two solutions to limit the sneak-path currents for ReRAM crossbars: a dedicated read circuit and the development of selector devices. We describe the selector fabrication, as well as the electrical characterization and the combination with our ReRAMs in a 1S1R configuration. Finally, we show two methods to integrate ReRAM devices in the BEoL of CMOS chips.
Andras Kis, Guilherme Migliato Marega
Aleksandra Radenovic, Andras Kis, Mukesh Kumar Tripathi, Zhenyu Wang, Asmund Kjellegaard Ottesen, Yanfei Zhao, Guilherme Migliato Marega, Hyungoo Ji