Publication

Anomalous Hall and Nernst Effects in Co2TiSn and Co2Ti0.6V0.4Sn Heusler Thin Films

Abstract

Magnetotransport (magnetoresistance and anomalous Hall effect) and thermoelectric (Seebeck and anomalous Nernst effect) effects are investigated on epitaxially grown Co2TiSn and Co2Ti0.6V0.4Sn Heusler thin films. An anomalous Nernst coefficient up to 1.8 mu V/K is observed in Co2Ti0.6V0.4Sn at 220 K, which is almost 12 times larger than in the undoped Co2TiSn thin film at 300 K. In analogy to the anomalous Hall angle, we extract the anomalous Nernst angle from experimental results by comparing the anomalous Nernst voltage with the thermopower. The anomalous Nernst angle for Co2Ti0.6V0.4Sn is 15% at 220 K, whereas it is only 0.5% for the undoped film. Considering the Mott relation for anomalous Hall and Nernst effects, these experimental results may be accounted for by an enhanced energy derivative of the anomalous Hall conductivity at the Fermi level that is shifted by vanadium doping. These results of a large anomalous Nernst angle provide opportunities to realize spin-caloritronic devices for efficient on-chip energy harvesting based on magnetic Heusler thin films.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related concepts (22)
Hall effect
The Hall effect is the production of a potential difference (the Hall voltage) across an electrical conductor that is transverse to an electric current in the conductor and to an applied magnetic field perpendicular to the current. It was discovered by Edwin Hall in 1879. The Hall coefficient is defined as the ratio of the induced electric field to the product of the current density and the applied magnetic field. It is a characteristic of the material from which the conductor is made, since its value depends on the type, number, and properties of the charge carriers that constitute the current.
Topological insulator
A topological insulator is a material whose interior behaves as an electrical insulator while its surface behaves as an electrical conductor, meaning that electrons can only move along the surface of the material. A topological insulator is an insulator for the same reason a "trivial" (ordinary) insulator is: there exists an energy gap between the valence and conduction bands of the material. But in a topological insulator, these bands are, in an informal sense, "twisted", relative to a trivial insulator.
Quantum Hall effect
The quantum Hall effect (or integer quantum Hall effect) is a quantized version of the Hall effect which is observed in two-dimensional electron systems subjected to low temperatures and strong magnetic fields, in which the Hall resistance Rxy exhibits steps that take on the quantized values where VHall is the Hall voltage, Ichannel is the channel current, e is the elementary charge and h is Planck's constant. The divisor ν can take on either integer (ν = 1, 2, 3,...) or fractional (ν = 1/3, 2/5, 3/7, 2/3, 3/5, 1/5, 2/9, 3/13, 5/2, 12/5,.
Show more
Related publications (33)

Weyl metallic state induced by helical magnetic order

Henrik Moodysson Rønnow, Jan Hugo Dil, Ivica Zivkovic, Jian Rui Soh, Xupeng Yang

In the rapidly expanding field of topological materials there is growing interest in systems whose topological electronic band features can be induced or controlled by magnetism. Magnetic Weyl semimetals, which contain linear band crossings near the Fermi ...
Berlin2024

Type-I antiferromagnetic Weyl semimetal InMnTi2

Nicola Marzari, Davide Grassano, Luca Binci

Topological materials have been a main focus of studies in the past decade due to their protected properties that can be exploited for the fabrication of new devices. Among them, Weyl semimetals are a class of topological semimetals with nontrivial linear ...
College Pk2024

Anisotropic and nonlinear transport in microstructured 3D topological semimetals

Xiangwei Huang

Topological semimetals are frequently discussed as materials platforms for future electronics that exploit the remarkable properties of their quasiparticles. These ideas are mostly based on dispersion relations that mimic relativistic particles, such as We ...
EPFL2022
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.