Publication

Mechanics of a pressure-controlled adhesive membrane for soft robotic gripping on curved surfaces

Jamie Paik, Metin Sitti, Sukho Song
2019
Journal paper
Abstract

This paper aims at understanding the adhesion mechanics of a pressure-controlled adhesive thin elastomeric membrane for soft robotic gripping on non-planar, curved surfaces. The adhesive elastic membrane is lined with gecko-inspired microfiber arrays and can be inflated or deflated by controlled internal air pressure. Previous studies with the soft robotic grippers using dry adhesives showed repeatable adhesion and transfer printing of various non-planar objects with high reliability. In this study, we perform experimental characterization and theoretical analysis to better understand the influence of size and shape of the adhering curved objects on the range of internal air pressures as well as the force profile. In addition, decrease in the internal air pressure results in an increased pull-off force associated with a change in the range of gripper retraction for pulling off the membrane on various curved surfaces. An approximate analytical model dealing with the complex boundary conditions presented in this paper can provide quantitative estimates of pull-off forces for a wide variety of surface curvatures and internal air pressures, as well as qualitative understanding of how force profiles change under moderate pressure differentials.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.