Publication

A finite element framework based on bivariate simplex splines on triangle configurations

Xiaodong Wei, Juan Cao
2019
Journal paper
Abstract

Recently, triangle configuration based bivariate simplex splines (referred to as TCB-spline) have been introduced to the geometric computing community. TCB-splines retain many attractive theoretic properties of classical B-splines, such as partition of unity, local support, polynomial reproduction and automatic inbuilt high-order smoothness. In this paper, we propose a computational framework for isogeometric analysis using TCB-splines. The centroidal Voronoi tessellation method is used to generate a set of knots that are distributed evenly over the domain. Then, knot subsets are carefully selected by a so-called link triangulation procedure (LTP), on which shape functions are defined in a recursive manner. To achieve high-precision numerical integration, triangle faces served as background integration cells are obtained by triangulating the entire domain restricted to all knot lines, i.e., line segments defined by any two knots in a knot subset. Various numerical examples are carried out to demonstrate the efficiency, flexibility and optimal convergence rates of the proposed method. (C) 2019 Elsevier B.V. All rights reserved.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.