Are you an EPFL student looking for a semester project?
Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.
Let R be a semilocal Dedekind domain with fraction field F. It is shown that two hereditary R-orders in central simple F-algebras that become isomorphic after tensoring with F and with some faithfully flat etale R-algebra are isomorphic. On the other hand, this fails for hereditary orders with involution. The latter stands in contrast to a result of the first two authors, who proved this statement for Hermitian forms over hereditary R-orders with involution. The results can be restated by means of etale cohomology and can be viewed as variations of the Grothendieck-Serre conjecture on principal homogeneous spaces of reductive group schemes. The relationship with Bruhat-Tits theory is also discussed.
Eva Bayer Fluckiger, Ting-Yu Lee