La cohomologie étale est la théorie cohomologique des faisceaux associée à la topologie étale. Elle mime le comportement habituel de la cohomologie classique sur des objets mathématiques où celle-ci n'est pas envisageable, en particulier les schémas et les espaces analytiques.
La cohomologie étale a été introduite pour les schémas par Alexander Grothendieck et Michael Artin dans SGA 4 et 41⁄2, avec l'objectif de réaliser une cohomologie de Weil et ainsi résoudre les conjectures de Weil, objectif partiellement rempli, plus tard complété par Pierre Deligne avec l'introduction de la cohomologie l-adique. L'adjectif « étale » se réfère à la notion de domaine étalé en géométrie analytique complexe.
À l'origine, dans SGA 4, Grothendieck avait introduit la cohomologie étale dans le contexte plus général des sites et topoi. Dans de nombreuses situations cependant, cet appareil théorique n'est pas nécessaire.
Plus tard, une cohomologie étale pour les espaces analytiques (en particulier le demi-plan supérieur p-adique) a été développée par Vladimir Berkovich pour le programme de Langlands.
Pour comprendre le besoin d'une telle théorie, il s'agit de comprendre en quoi la cohomologie usuelle est insatisfaisante.
On peut observer ce qui se passe si l'on essaye de travailler sur la cohomologie classique (d'espace topologique) d'un schéma, par exemple avec la topologie de Zariski :
Si est une variété complexe et un faisceau constant, on n'a pas le résultat « naturel » que pour tout i > 0.
Si est un schéma ou un de dimension d, ses groupes de cohomologie (topologique) sont nuls à partir du (d+1)-ième inclus, alors qu'en tant que variété complexe algébrique de dimension d, on s'attend à ce que les groupes soient nuls à partir de 2d+1.
Topologie étale
En un certain sens, la topologie de Zariski est trop grossière pour rendre compte de la cohomologie : elle manque d'ouverts.
Cependant, on ne peut pas « simplement » ajouter des ouverts à la topologie de Zariski.
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Singular cohomology is defined by dualizing the singular chain complex for spaces. We will study its basic properties, see how it acquires a multiplicative structure and becomes a graded commutative a
Les groupes de cohomologie d'un faisceau de groupes abéliens sont les groupes de cohomologie du complexe de cochaines. Les groupes de cohomologie d'un faisceau de groupes abéliens sont les groupes de cohomologie du complexe de cochaines : où est une résolution injective du faisceau , et désigne le groupe abélien des sections globales de . A unique isomorphisme canonique près, ces groupes ne dépendent pas de la résolution injective choisie. Le zéroième groupe est canoniquement isomorphe à .
En mathématiques, les conjectures de Weil, qui sont devenues des théorèmes en 1974, ont été des propositions très influentes à la fin des années 1940 énoncées par André Weil sur les fonctions génératrices (connues sous le nom de fonctions zêta locales) déduites du décompte de nombre de points des variétés algébriques sur les corps finis. Une variété sur « le » corps à q éléments possède un nombre fini de points sur le corps lui-même, et sur chacune de ses extensions finies.
Pierre René, vicomte Deligne est un mathématicien belge, né le à Etterbeek dans la Région de Bruxelles-Capitale. Pierre René Deligne est diplômé de l'Université libre de Bruxelles en 1966, en ayant effectué une année de scolarité à l’école normale supérieure en 1965-1966. Il soutient une première thèse de doctorat en 1968 à Bruxelles. De 1968 à 1984, il est membre de l’Institut des hautes études scientifiques, où il assiste aux séminaires d’Alexandre Grothendieck qu'il appelle son « maître ».
Explore les séquences de tours, les homomorphismes et leurs applications en topologie, y compris le calcul de l'homologie et la construction de télescopes.
We investigate generalizations along the lines of the Mordell-Lang conjecture of the author's p-adic formal Manin-Mumford results for n-dimensional p-divisible formal groups F. In particular, given a finitely generated subgroup (sic) of F(Q(p)) and a close ...
SPRINGER INT PUBL AG2023
We determine the bounded cohomology of the group of homeomorphisms of certain low-dimensional manifolds. In particular, for the group of orientation-preserving homeomorphisms of the circle and of the closed 2-disc, it is isomorphic to the polynomial ring g ...
SPRINGER HEIDELBERG2023
,
Let k be a field, and let L be an etale k-algebra of finite rank. If a is an element of k(x), let X-a be the affine variety defined by N-L/k(x) = a. Assuming that L has at least one factor that is a cyclic field extension of k, we give a combinatorial desc ...