Résumé
En mathématiques, un groupe réductif est un groupe algébrique G sur un corps algébriquement clos tel que le radical unipotent de G (c'est-à-dire le sous-groupe des éléments unipotents de ) soit trivial. Tout est réductif, de même que tout tore algébrique et tout groupe général linéaire. Plus généralement, sur un corps k non nécessairement algébriquement clos, un groupe réductif est un groupe algébrique affine lisse G tel que le radical unipotent de G sur la clôture algébrique de k soit trivial. Il est nécessaire de faire intervenir la clôture algébrique dans cette définition, pour inclure le cas de corps de base non parfaits, comme des corps de fonctions locaux ou globaux sur des corps finis. Ce nom de réductif vient de la complète réductibilité des représentations d'un tel groupe, lorsque la caractéristique du corps est nulle. En caractéristique non nulle, le théorème de Haboush démontre une propriété un peu plus faible qu'avait conjecturée Mumford. Si G est un sous-groupe lisse fermé de GL(k) qui agit de façon irréductible sur k, alors G est réductif. En particulier, GL et SL sont réductifs (le second étant même semi-simple). On définit les groupes de Lie réductifs comme les groupes de Lie dont l'algèbre de Lie est réductive ; concrètement, c'est la somme d'une algèbre de Lie abélienne et d'une algèbre de Lie semi-simple. On ajoute parfois la condition que la (la composante connexe de l'élément neutre dans le groupe) soit d'indice fini. Une algèbre de Lie est dite réductive si sa représentation adjointe est complètement réductible, mais ceci n'implique pas que toutes ses représentations de dimension finie le soient. La notion de groupe réductif n'est pas tout à fait la même pour les groupes de Lie que pour les groupes algébriques, parce qu'un groupe de Lie réductif peut être le groupe des points réels d'un groupe algébrique unipotent.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.