Publication

MATHICSE Technical Report : Analysis-aware defeaturing: problem setting and a posteriori estimation

Abstract

Defeaturing consists in simplifying geometrical models by removing the geometrical features that are considered not relevant for a given simulation. Feature removal and simplification of computer-aided design models enables faster simulations for engineering analysis problems, and simplifies the meshing problem that is otherwise often unfeasible. The effects of defeaturing on the analysis are then neglected and, as of today, there are basically very few strategies to quantitatively evaluate such an impact. Un- derstanding well the effects of this process is an important step for automatic integration of design and analysis. We formalize the process of defeaturing by understanding its effect on the solution of the Laplace equation defined on the geometrical model of interest containing a single feature, with Neumann bound- ary conditions on the feature itself. We derive an a posteriori estimator of the energy error between the solutions of the exact and the defeatured geometries in Rn\mathbb{R}^n , n{2,3}n\in\{2,3\}, that is simple, efficient and reliable up to oscillations. The dependence of the estimator upon the size of the features is explicit.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.