Publication

Simultaneous Selective Area Growth of Wurtzite and Zincblende Self-Catalyzed GaAs Nanowires on Silicon

Abstract

Selective area epitaxy constitutes a mainstream method to obtain reproducible nanomaterials. As a counterpart, self-assembly allows their growth without costly substrate preparation, with the drawback of uncontrolled positioning. We propose a mixed approach in which self-assembly is limited to reduced regions on a patterned silicon substrate. While nanowires grow with a wide distribution of diameters, we note a mostly binary occurrence of crystal phases. Self-catalyzed GaAs nanowires form in either a wurtzite or zincblende phase in the same growth run. Quite surprisingly, thicker nanowires are wurtzite and thinner nanowires are zincblende, while the common view predicts the reverse trend. We relate this phenomenon to the influx of Ga adatoms by surface diffusion, which results in different contact angles of Ga droplets. We demonstrate the wurtzite phase of thick GaAs NWs up to 200 nm in diameter in the Au-free approach, which has not been achieved so far to our knowledge.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.