Are you an EPFL student looking for a semester project?
Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.
Solid-state quantum computers require classical electronics to control and readout individual qubits and to enable fast classical data processing [1-3]. Integrating both subsystems at deep cryogenic temperatures [4], where solid-state quantum processors operate best, may solve some major scaling challenges, such as system size and input/output (I/O) data management [5]. Spin qubits in silicon quantum dots (QDs) could be monolithically integrated with complementary metal-oxide-semiconductor (CMOS) electronics using very-large-scale integration (VLSI) and thus leveraging over wide manufacturing experience in the semiconductor industry [6]. However, experimental demonstrations of integration using industrial CMOS at mK temperatures are still in their infancy. Here we present a cryogenic integrated circuit (IC) fabricated using industrial CMOS technology that hosts three key ingredients of a silicon-based quantum processor: QD arrays (arranged here in a non-interacting 3x3 configuration), digital electronics to minimize control lines using row-column addressing and analog LC resonators for multiplexed readout, all operating at 50 mK. With the microwave resonators (6-8 GHz range), we show dispersive readout of the charge state of the QDs and perform combined time- and frequency-domain multiplexing, enabling scalable readout while reducing the overall chip footprint. This modular architecture probes the limits towards the realization of a large-scale silicon quantum computer integrating quantum and classical electronics using industrial CMOS technology.
Elison de Nazareth Matioli, Andras Kis, Andreas Schueler, Anna Krammer, Philip Johannes Walter Moll, Guilherme Migliato Marega, Reza Soleiman Zadeh Ardebili