Summary
A three-dimensional integrated circuit (3D IC) is a MOS (metal-oxide semiconductor) integrated circuit (IC) manufactured by stacking as many as 16 or more ICs and interconnecting them vertically using, for instance, through-silicon vias (TSVs) or Cu-Cu connections, so that they behave as a single device to achieve performance improvements at reduced power and smaller footprint than conventional two dimensional processes. The 3D IC is one of several 3D integration schemes that exploit the z-direction to achieve electrical performance benefits in microelectronics and nanoelectronics. 3D integrated circuits can be classified by their level of interconnect hierarchy at the global (package), intermediate (bond pad) and local (transistor) level. In general, 3D integration is a broad term that includes such technologies as 3D wafer-level packaging (3DWLP); 2.5D and 3D interposer-based integration; 3D stacked ICs (3D-SICs); 3D heterogeneous integration; and 3D systems integration.; as well as true monolithic 3D ICs International organizations such as the Jisso Technology Roadmap Committee (JIC) and the International Technology Roadmap for Semiconductors (ITRS) have worked to classify the various 3D integration technologies to further the establishment of standards and roadmaps of 3D integration. As of the 2010s, 3D ICs are widely used for NAND flash memory and in mobile devices. 3D packaging refers to 3D integration schemes that rely on traditional interconnection methods such as wire bonding and flip chip to achieve vertical stacking. 3D packaging can be divided into 3D system in package (3D SiP) and 3D wafer level package (3D WLP). 3D SiPs that have been in mainstream manufacturing for some time and have a well-established infrastructure include stacked memory dies interconnected with wire bonds and package on package (PoP) configurations interconnected with wire bonds or flip chip technology. PoP is used for vertically integrating disparate technologies. 3D WLP uses wafer level processes such as redistribution layers (RDLs) and wafer bumping processes to form interconnects.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.