Are you an EPFL student looking for a semester project?
Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.
Micro Aerial Vehicles (MAVs) are being used in a wide range of applications such as surveillance, reconnaissance, inspection, and search and rescue. However, due to their size and mission profiles, they are prone to tipping over, jeopardizing their operation. Self-righting is an open challenge for fixed-wing drones since existing research focuses on terrestrial and multicopter flying robots with solutions that increase drag and structural weight. Until now, solutions for winged drones remained largely unexplored. Inspired by beetles, we propose a robust and elegant solution where we retrofit a fixed-wing drone with a set of additional wings akin to beetles shell structured wings called elytra. We show that artificial elytra provide additional lift during flight to mitigate their structural weight while also being able to self-right the MAV when it has been flipped over. We performed simulations along with dynamic and aerodynamic experiments to validate our results.
Alcherio Martinoli, Lucas Cédric Wälti
Thomas Keller, Landolf-Giosef-Anastasios Rhode-Barbarigos, Tara Habibi